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cDISIM, Università degli Studi dell’Aquila, L’Aquila, Italy (e-mail: alfredo.germani@univaq.it).

Abstract

We describe a consensus-based distributed filtering algorithm for linear systems with a parametrized gain and show that when
the parameter becomes large the error covariance at each node becomes arbitrarily close to the error covariance of the optimal
centralized Kalman filter. The result concerns distributed estimation over a connected un-directed or directed graph and for
static configurations it only requires to exchange the estimates among adjacent nodes. A comparison with related approaches
confirms the theoretical results and shows that the method can be applied to a wide range of distributed estimation problems.

Key words: Continuous-time filters; Kalman filtering; Distributed filtering; Consensus filters.

1 Introduction

Consensus-based algorithms for distributed filtering of
the state of a dynamical target system have attracted
considerable research in the last years. Distributed fil-
tering involves state estimation using a set of local filters
that communicate with all other nodes through a com-
munication network that constraints the information ex-
change to the neighbors in the network without requiring
a centralized node. This framework encompasses a wide
range of cases, such as multi-sensor fusion where a set of
identical sensors aims at reaching a common estimate of
the target through some distributed information fusion
algorithm, or wireless sensor networks where the indi-
vidual nodes may either be communication nodes that
only have processing and computation capabilities, but
no direct access to the target system, or sensor nodes
with additional sensing capabilities. The popularity of
distributed estimation techniques is due to their scalabil-
ity for large networks and high fault tolerance. Surveys
of distributed state estimation approaches and compar-
ison with centralized and decentralized methods can be
found in [4, 14, 18]. In addition, the motivation for reach-
ing consensus and synchronization in the distributed es-
timates arises in many fields, especially in connection
with control problems, where are particularly relevant
in the context of cooperative multi-agent systems, see
[11, 15, 20, 21] for comprehensive treatments.

The most relevant issues for distributed estimation tech-
niques include: (i) accuracy, i.e., reducing the estimation
error at each node; (ii) consensus, i.e. convergence of es-
timates across nodes; (iii) communication, i.e. reducing
the amount of communication burden among nodes; (iv)
observability, i.e. the capability of dealing with sensors
with limited or null system measurements [8]. It is gen-
erally assumed the existence of trade-offs among these
features. For example, strong consensus may be obtained
at the expenses of estimation accuracy at some nodes
[2], and increased accuracy might require more intensive
communication across nodes. It is moreover tacitly as-
sumed that the accuracy of distributed schemes is always
worse than accuracy of a centralized optimal algorithm.
These limitations are present in all the approaches re-
ported in the literature. In [14] the system is supposed
to be jointly detectable by each node and its neighbors.
Recent approaches [7, 10, 19] have relaxed this assump-
tion but a trade-off between internal stability of the filter
and accuracy of the estimates still exists.

Our work extends the preliminary version in [1] and
shows that these trade-offs can be overcome.

(1) We exhibit a distributed algorithm that requires
only collective observability, attains consensus and
tends to optimal accuracy with least communica-
tion burden.

(2) The proposed algorithm extends the consensus dis-
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tributed DKF of [14] to the case of networks with
nodes that have limited or null measurement capa-
bilities and provides a more accurate estimate.

(3) Our work extends the results obtained in [16] that
uses a similar approach for systems with null or
bounded measurement noise.

The Approximate Distributed Kalman Filter (ADKF)
is introduced in Section 3 after formally describing the
framework in Section 2 and the centralized optimal ap-
proach in Section 2.1. The extension to directed graphs
and arbitrary gains is considered in Section 4. In Section
5 and Section 6 we compare, from the theoretical and
numerical perspective, the proposed algorithm with the
centralized solution and other recent approaches, DKF
[14], MKCF [17, 7], DKBF [19], and IKCF of [7].

Notation. R denotes real numbers. For a square ma-
trix A, trpAq is the trace, σpAq is the spectrum and µpAq
the spectral abscissa. If µpAq ă 0 then A is said to be
Hurwitz stable. Et¨u denotes expectation. b is the Kro-
necker product. The operators rowipq, colipq, diagipq de-
note respectively the horizontal, vertical and diagonal
compositions of matrices and vectors indexed by i. Let
Spnq P Rnˆn be the set of symmetric matrices of size n.
Ppnq (resp., P`pnq) Ă Spnq denotes the set of positive
semi-definite (definite) matrices in Spnq. In is the iden-
tity matrix of size n and Un “ 1n1Jn , 1n “ colni“1p1q is
the square matrix of size n with all entries 1.

2 Problem formulation and preliminaries

We use a graph G “ pV, Eq to describe the information
exchange between the N nodes. V “ t1, 2 . . . , Nu is the
set of agents and E Ď V ˆ V is the set of edges. An edge
pi, jq of G represents the exchange information between
nodes i and j. The graph is undirected and connected,
and the set of neighbors of node i is denoted by N piq :“
tj P V : pj, iq P E , j ‰ iu. The adjacency matrix A of a
graph G is an N ˆN matrix, whose pi, jq-th entry is 1 if
pi, jq P E . The degree matrix G is D “ diagip|N piq|q. The
Laplacian of G is L “ D´A. L is symmetric iff the graph
is undirected. Moreover, 0 “ λ1pLq ă λ2pLq ď ¨ ¨ ¨ ď

λN pLq, where λipLq P σpLq, iff the graph is connected.
An eigenvector associated to λ1pLq is 1N .

Consider the process

9xt “Axt ` ft, (1)

y
piq
t “Cixt ` g

piq
t , i “ 1, . . . , N, (2)

where xt P Rn, y
piq
t P Rqi , qi ě 0, and ft and g

piq
t ,

i “ 1, . . . , N , are zero-mean white noises, mutually
independent with covariance respectively Q P P`pnq,
Ri P P`pqiq i “ 1, . . . , N [6]. The matrices Q and R “

diagipRiq are nonsingular. Also x0 is random with mean
sx0 :“ Etx0u and covariance Σx0 :“ Etpx0 ´ sx0qpx0 ´

sx0q
Ju. If C “ colipCiq we assume that pC,Aq is observ-

able. Also, we use the notation yt “ colipy
piq
t q. Each y

piq
t

represents the data available at node i, i “ 1, . . . , N ,
in the network. We will design a distributed state esti-
mator for the system (1) with the given topology of the
network G. The distributed estimators will consist of N
local estimators, one for each node, which exchange their
local estimate with the neighbors.

2.1 Centralized Kalman-Bucy filter (CKBF)

The equations of the centralized Kalman-Bucy filter
(CKBF) for (1) are px0 “ sx0, P0 “ Σx0 ,

9
pxt “Apxt `Ktpyt ´ Cpxtq, (3)

9Pt “APt `PtA
J `Q´PtC

JR´1CPt, (4)

with Kt “ PtC
JR´1. The matrix Pt represents the co-

variance of the estimation error Etpxt ´ pxtqpxt ´ pxtq
Ju.

The CKBF is optimal and in the Gaussian case it com-
putes the conditional expectation Etxt | ys, s ď tu, The
covariance Pt P P`pnq is bounded for all t ě 0 and
Pt Ñ P8 as tÑ `8 with P8 P P`pnq the unique solu-
tion of

0 “ AP8 ` P8A
J `Q´ P8C

JR´1CP8. (5)

If AC :“ A ´ K8C, K8 “ P8C
JR´1, from (4), we

obtain the asymptotically optimal CBKF

9̂xss,t “ Ax̂ss,t `K8pyt ´ Cpxss,tq. (6)

3 Approximate distributed Kalman filter
(ADKF)

3.1 ADKF algorithm

The ADKF consists of one filter for each sensor node of
the network. The equations at the i-th sensor node are

9
px
piq

t “Apx
piq
t `Kipy

piq
t ´ Cipx

piq
t q

` γP8
ÿ

jPN piq

ppx
pjq
t ´ px

piq
t q, (7)

withKi “ NP8Ci
JRi

´1, P8 solution of (5) and γ ą 0 a
filter parameter chosen so that the matrixADpγq defined
below is Hurwitz stable.

Ai :“A´KiCi, i “ 1, . . . , N, (8)

ADpγq :“diagipAiq ´ γpLb P8q P RnNˆnN . (9)
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Theorem 1 There exists γ0 ą 0 such that for all γ ą γ0
ADpγq is Hurwitz stable.

Proof. We prove that there exists X8 P P`pnNq and
γ0 ą 0 such that for all γ ą γ0

X8ADpγq `A
J
DpγqX8 ă 0. (10)

IfX8 :“ INbP
´1
8 andWi :“ P´1

8 Ai`A
J
i P

´1
8 , we have

X8ADpγq `A
J
DpγqX8 “ diagipWiq ´ 2γpLb Inq.

Since v P RnNzt0u : vJpL b Inqv “ 0 ñ v “ 1N b sv,
sv P Rnzt0u, it follows that

v P RnNzt0u : vJpLb Inqv “ 0

ñ vJdiagipWiqv “ NsvJpP´1
8 AC `A

J
CP

´1
8 qsv ă 0.

By Finsler’s lemma there exists γ0 ą 0 such that, for all
γ ą γ0, diagipWiq´2γpLbInq ă 0, which proves (10). l

3.2 Properties of the ADKF

Define the local estimation error e
piq
t :“ xt ´ px

piq
t , the

total estimation error et :“ colipe
piq
t q, the total measure-

ment noise vector gt :“ colipg
piq
t q P R

řn
i“1 qi , the noise

vector ht :“ colipft ´ Kig
piq
t q with covariance Ψh :“

EththJt u, and the estimation error covariance matrix
Xt :“ EteteJt u. Clearly Xt depends on γ, but we omit
this dependence for notational simplicity.

9et “ADpγqet ` ht (11)

Ψh “UN bQ` diagipKiqR diagipK
J
i q. (12)

Theorem 2 For all γ ą γ0 the estimation error covari-
ance matrix Xt is uniformly bounded in time.

Proof. The result follows from the fact that ADpγq is
Hurwitz for γ ą γ0 and Ψh is constant. l

Our purpose is to show the key result that X8 Ñ UN b
P8 when γ Ñ 8 (P8 is the asymptotic error covari-
ance of the CKBF). Let XC

8 :“ UN b P8 be the the
asymptotic error covariance ofN identical CBKFs. Since
pLb P8qXC

8 “ pLb P8qpUN b P8q “ 0,

0 “
´

diagNi“1pACq ´ γpLb P8q
¯

XC
8

XC
8

´

diagNi“1pACq ´ γpLb P8q
¯J

` UN bQ

` diagNi“1pK8qpUN bRqdiagNi“1pK
T
8q. (13)

Let Gi :“ CJi R
´1
i Ci, Gd :“ diagipGiq, and G :“

CJR´1C. Notice that

G “
N
ÿ

i“1

Gi “
N
ÿ

i“1

CJi R
´1
i Ci. (14)

By introducing the covariance mismatch Et :“ Xt´XC
8

we obtain after some manipulations

9Et “ADpγqEt `EtA
J
Dpγq ` Σ, (15)

Σ :“ N2pIN b P8qGdpIN b P8q

` UN b pP8GP8q ´NpIN b P8qGdpUN b P8q

´NpUN b P8qGdpIN b P8q. (16)

Our main result can thus be stated as follows.

Theorem 3 As γ Ñ `8, the covariance matrix of the
estimation error of the ADKF (7) tends to the covariance
matrix of the estimation error of the CKBF (4) when
tÑ `8. In other words, we have

lim
γÑ`8

lim
tÑ`8

Xt “ XC
8 :“ UN b P8. (17)

In order to prove the above statement, we notice that
there always exists a transformation T such that

T “

¨

˚

˚

˚

˚

˚

˝

1?
N

1JN

t2
...

tN

˛

‹

‹

‹

‹

‹

‚

, TLTJ “ diagt0, λ2, . . . , λNu

where λ2, . . . , λN ą 0 are the positive eigenvalues of L
(see Section 2) and ti1N “

řN
j“1 ti,j “ 0, tit

J
j “ δi,j with

i, j “ 2, . . . , N , i.e. T is orthonormal. Define S :“ TbIn
and let rEt :“ SEtS

J. We have after some manipulations
and taking into account (14)

9
rEt “ rADpγqrEt ` rEt

rAJDpγq `N
2
rΣ (18)

where for i, j “ 2, . . . , N,

rADpγq “

¨

˚

˚

˚

˚

˚

˝

AC Π1,2 ¨ ¨ ¨ Π1,N

Π2,1 Π2,2 ´ γλ2P8 ¨ ¨ ¨ Π2,N

...
...

. . .
...

ΠN,1 ΠN,2 ¨ ¨ ¨ ΠN,N ´ γλNP8

˛

‹

‹

‹

‹

‹

‚

(19)
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Π1,j “Πj,1 :“ ´
?
N

N
ÿ

l“1

tj,lP8Gl, j “ 2, . . . , N,

Πi,j “Πj,i :“ δi,jA´N
N
ÿ

l“1

ti,ltj,lP8Gl,

rΣ “

¨

˚

˚

˚

˚

˚

˝

0 0 ¨ ¨ ¨ 0

0 rΣ2,2 ¨ ¨ ¨ rΣ2,N

...
...

. . .
...

0 rΣN,2 ¨ ¨ ¨ rΣN,N

˛

‹

‹

‹

‹

‹

‚

(20)

rΣi,j “rΣj,i :“
N
ÿ

l“1

ti,ltj,lP8GlP8.

The matrix rADpγq is Hurwitz @γ ą γ0 since ADpγq is
Hurwitz @γ ą γ0 by Theorem 1. Moreover, since @γ ą

γ0 : σp rADpγqq X σp´ rAJDpγqq “ H, for any γ ą γ0 there

exists a unique symmetric solution rE8pγq to

0 “ rADpγqrE8pγq ` rE8pγq rA
J
Dpγq `N

2
rΣ (21)

The proof of Theorem 3 follows directly from the next
two lemmas.

Lemma 1 For each γ ą γ0 the matrix rEt satisfies

lim
tÑ`8

rEt “ rE8pγq. (22)

Proof. Let ∆t :“ rEt´rE8pγq. We have 9∆t “ rADpγq∆t`

∆tA
J
Dpγq. Since rApγq is Hurwitz for all γ ě γ0 we have

∆t “ e
rADpγqt∆0e

rAJDpγqt Ñ 0 as tÑ `8. l

Lemma 2 The matrix rEt satisfies

lim
γÑ`8

rE8pγq “ 0. (23)

Proof. The solution rE8pγq of (21) is unique and it can
be parametrized in γ as follows. Let

W1 :“ rowNi“2Π1i W2 :“ colNi“2Π1i (24)

W0 :“

¨

˚

˚

˚

˝

Π2,2 ¨ ¨ ¨ Π2,N

...
. . .

...

ΠN,2 ¨ ¨ ¨ ΠN,N

˛

‹

‹

‹

‚

, Λ :“

¨

˚

˚

˚

˝

rΣ2,2 ¨ ¨ ¨ rΣ2,N

...
. . .

...

rΣN,2 ¨ ¨ ¨ rΣN,N

˛

‹

‹

‹

‚

.

(25)

With this definitions the equation (21) reads out as

˜

0 0

0 Λ

¸

“

˜

AC W1

W2 W0 ´ γD b P8

¸

rE8pγq

` rE8pγq

˜

AC W1

W2 W0 ´ γD b P8

¸J

, (26)

where D “ diagNi“2pλiq. The solution rE8pγq is analytic
in γ ą 0 and can be written (using a Taylor expansion)
as

rE8pγq “
1

γ

¨

˝

Y1,1 `O
´

1
γ2

¯

1
γY2,1 `O

´

1
γ2

¯

1
γY

J
2,1 `O

´

1
γ2

¯

Y3,1 `
1
γY3,2 `O

´

1
γ2

¯

˛

‚

(27)

where Y3,1 is the unique (since σpD b P8q X σp´D b
P8q “ H) solution of

Y3,1pD b P8q ` pD b P8qY3,1 “ N2Λ,

Y3,2 is the unique (since σpDbP8qXσp´DbP8q “ H)
solution of

pD b P8qY3,2 ` Y3,2pD b P8q “W0Y3,1 ` Y3,1W
J
0 ,

Y2,1 is defined as Y2,1 :“W1Y3,1pD b P8q
´1, Y1,1 is the

unique (since σpACq X σp´A
J
Cq “ H) solution of

ACY1,1 ` Y1,1A
J
C “ ´pW1Y

J
2,1 ` Y2,1W

J
1 q.

From (27) it follows that limγÑ`8
rE8pγq “ 0. l

Clearly, from the above lemmas we conclude that

lim
γÑ`8

lim
tÑ`8

rEt “ lim
γÑ`8

lim
tÑ`8

Et “ 0 (28)

which proves Theorem 3. An important consequence is
that the error covariance of each filter at the sensor node
tends (as γ Ñ `8 and t Ñ `8) to the optimal steady
state P8 of the centralized filter.

Corollary 1 For each j “ 1, . . . , N , it holds

lim
γÑ`8

lim
tÑ`8

rXtsj,j “ P8. (29)

Remark 1 In any discrete-time implementation γ
cannot be chosen arbitrarily large, due to numerical is-
sues. A larger γ requires a smaller integration step that
constraints the communication lag among nodes. Con-
sequently, any implmentation of the ADKF will suffer
a certain performance degradation with respect to the
CKBF, in accordance with what happens in the discrete
time framework.
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Algorithm Broadcast Push-Sum
1: In all nodes set s0,i “ CJi R

´1
i Ci and w0,i “ 0,

except for w0,1 “ 1.
2: At time 0 each nodes sends ps0,i, w0,iq to itself.
3: At time t each node executes:

1. Let tsr, wru be the pairs sent to i in round t´1.
2. Let st,i “

ř

r sr, wt,i “
ř

r wr.
3. Send to all neighbors and to i (yourself):

˜

1
ˇ

ˇN piq
ˇ

ˇ` 1
st,i,

1
ˇ

ˇN piq
ˇ

ˇ` 1
wt,i

¸

4. st,i{wti is the estimate ofG at step t (if wt,i “ 0
the estimate is not specified or 0).

Fig. 1. A modified version of the Push-Sum algorithm of [9]
that makes possible the distributed computation G.

3.3 Distributed computation of P8

The ADKF is extremely simple to implement and the
information exchange among nodes is reduced to a min-
imum. However each node i needs to compute (or to
know) P8, thus the aim of this section is to show how the
this computation can be implemented in a completely
distributed manner. The matrix P8 can be computed by
solving (5), a matrix equation with size n that does not
depend on the graph structure and that even nodes with
limited computational power can easily solve. Clearly,
with many sensor nodes the size of C andR can be large,
but CJR´1C is a nˆ n matrix. The solution of (5) re-
quires G “ CJR´1C. When measurement noises are in-
dependent G is expressed as in (14), that is, the sum
of the matrices CJi R

´1
i Ci over the graph. A distributed

computation of G can be achieved by resorting to dis-
tributed algorithms to compute aggregate functions over
graphs [9]. In Fig. 1 we report an algorithm derived from
the Protocol Push-Sum of [9] to compute G in a dis-
tributed way. The speed of convergence of the local esti-
mate to the true value of G can be analyzed in the light
of the results of [9]. In the case of static graphs, the esti-
mation of G can be executed off-line before the filtering
phase. In presence of time-varying graphs, sensor failure
or insertion, the Push-Sum algorithm can be kept run-
ning during the execution of the filter in order to adapt
the value of G and therefore of P8. Finally, the value of
N can be computed by the same distributed algorithm
when it is not known at the nodes.

3.4 Distributed computation of γ

Theorem 2 states that the estimation error covariance is
bounded for γ ą γ0, thus the lower bound γ0 for γ needs
to be known at the nodes. Consider the inequality

p1N b P
´1
8 q rADpγq ` rAJDpγqp1N b P

´1
8 q ă 0 (30)

where rADpγq is as in (19). The left-hand part of (30) is

˜

W1,1 ´W1,2

´W2,1 AP ´W2,2

¸

´ 2γ

˜

0 0

0J Λb In

¸

(31)

where, by using Riccati equation (5),

W1,1 :“P´1
8 AC `A

J
CP

´1
8 “ ´P´1

8 QP´1
8 ´G ă 0

W1,2 :“WJ
2,1 :“ 2

?
N

´

řN
l“1 t2,lGl ¨ ¨ ¨

řN
l“1 tN,lGl

¯

,

AP :“IN´1 b pP
´1
8 A`AJP´1

8 q (32)

W2,2 :“2N

¨

˚

˚

˚

˝

řN
l“1 t

2
2,lGl ¨ ¨ ¨

řN
l“1 t2,ltN,lGl

...
. . .

...
řN
l“1 tN,lt2,lGl ¨ ¨ ¨

řN
l“1 t

2
N,lGl

˛

‹

‹

‹

‚

Therefore, a necessary and sufficient condition for (30) is

AP ´W2,2 ´ 2γΛb In ´W2,1W
´1
1,1W1,2 ă 0 (33)

Using the fact that
řN
j“1 t

2
i,j “ 1 for all i “ 1, . . . , N ,

W2,2γ0 and W2,1W1,2 ď 4N2pIN´1 bGq, we obtain

γ ą
}P´1
8 A`AJP´1

8 } ` γ̄0
2p1´ cospπ{Nqq

ą
}P´1
8 A`AJP´1

8 } ` γ̄0
λ2pLq

(34)

γ̄0 “4N2µ
`

pP´1
8 QP´1

8 `Gq´1
˘

µpGq, (35)

where we have used the inequality λ2pLq ě 2p1 ´
cospπ{Nqq, that holds for a connected undirected graph
with no multiple edges [5]. The lower bound depends on
A, Q, P8, G and N , that are available at each node in
view of the results of Section 3.3.

4 Additional results

4.1 Directed graphs

In this section we outline a generalization of ADKF to
weighted directed graphs. The pi, jq entry of A is the
weight associated to the edge. We assume that the graph
is simple and strongly connected, i.e. there exists a
directed path between each pair of nodes. The Lapla-
cian L P RNˆN is defined as L :“ M ´ A, M “

diagip
řN
j“1 Ai,jq. L has a zero eigenvalue with eigenvec-

tor 1N and if the graph is strongly connected µp´Lq “ 0.
The equations for the ADKF at the i-th sensor node are
obtained from (7) by replacing N with trpDq{di,

9
px
piq

t “Apx
piq
t `

trpDq

di
Kipy

piq
t ´ Cipx

piq
t q

` γP8
ÿ

jPN piq

ppx
pjq
t ´ px

piq
t q, (36)
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with Ki “ P8Ci
JRi

´1 and γ ą 0 a parameter. Define
Ai :“ A´ ptrpDq{diqKiCi and AD as in (9).

Theorem 4 There exists γ0 ą 0 such that for all γ ą γ0
ADpγq is Hurwitz stable.

Theorem 5 As γ Ñ `8, the covariance matrix of the
estimation error of the ADKF (36) tends to the covari-
ance matrix of the estimation error of the CKBF (4)
when tÑ `8.

4.2 Suboptimal distributed Kalman filter (SDKF)

By replacing the gains Ki in ADKF with non optimal
gains Li we obtain an algorithm, named SDKF, that
achieves consensus but it is no longer optimal for γ Ñ8.

9
px
piq

t “Apx
piq
t `NLipy

piq
t ´ Cipx

piq
t q ` γS

ÿ

jPN piq

ppx
pjq
t ´ px

piq
t q,

(37)

with Li P Rnˆqi , S P Spnq and γ ą 0 design parameters.
Define Ai :“ A ´ NLiCi and ADpγq :“ diagipAiq ´
γpLb Sq.

Theorem 6 For any L “ colipLiq such that AC :“ A´
LC is Hurwitz stable and any S P P`pnq such thatACS`
SAJC `Q`LRL

T “ 0 there exists γ0 ą 0, such that for
all γ ą γ0 ADpγq is Hurwitz stable.

Theorem 7 For all γ ą γ0 the estimation error co-
variance matrix Xt is uniformly bounded in time and
limtÑ`8Xt “ XC

8pγq where XC
8pγq is the unique posi-

tive definite solution of ADpγqX
C
8pγq `XC

8pγqA
J
Dpγq `

Ψh “ 0 that satisfies

lim
γÑ`8

XC
8pγq “ lim

γÑ`8
lim
tÑ`8

Xt “ UN b SL. (38)

5 Comparison with related approaches

DKF. The following popular continuous-time dis-
tributed filter was proposed in [13]. as an enhancement
of [12].

9
px
piq

t “Apx
piq
t ` PiC

J
i R

´1
i

´

ypiq ´ Cipx
piq
t

¯

` γPi
ÿ

jPN piq

´

px
piq
t ´ px

piq
t

¯

(39)

9Pi “APi ` PiA
J `Q´ PiC

J
i R

´1
i CiPi (40)

with γ a positive parameter. Notice the similarity
with (7) Clearly, Pi is bounded when pCi, Aq is an

observable pair. A slight extension is to apply the al-
gorithm by replacing ypiq with coljPN piqpypjqq and Ci
with coljPN piqpCjq. In any case, the DKF can be ap-
plied only when local observability conditions hold, and
in particular Ci ‰ 0, that is, all the sensor nodes (or
their immediate neighbors) have measurements. In this
condition the estimation error variance is bounded.

MKCF. The Multi-agent Consensus Filter (MKCF)
was originally proposed in [17] and extended in [7]. It
assumes that only the nodes for which gi “ 1 have
measurements and in thi case Ci “ I,

yiptq “ gizi “ gipx` viq. (41)

The MKCF algorithm needs to exchange both the esti-
mates and the matrices Pi among adjacent nodes. There
are no theoretical stability results for the MKCF. MKCF
can applied to a wider sets of network with respect to
DKF but it is limited by the assumption Ci “ I.

DKBF. The Distributed Kalman-Bucy Filter [19]
builds over the approach of [10], where it was shown
that the optimal centralized accuracy can be attained if
the consensus gains were chosen by taking into account
the estimation error covariance of each node. Since this
is not feasible in a distributed setting and resulted in a
conservative choice of the consensus gain, [19] proposed

9
px
piq

t “Apx
piq
t ` PiC

J
i R

´1
i pzi ´ Cipx

piq
t q

` Pi
ÿ

jPN piq

P´1
j

´

px
pjq
t ´ px

piq
t

¯

(42)

9Pi “APi ` PiA
J `Q´ PiC

J
i R

´1
i CiPi

´ Pi
ÿ

jPN piq

`

P´1
j ´ P´1

i

˘

Pi. (43)

For this filter [19] proves stability in mean of the estima-
tion error under an ad-hoc assumption that is however
difficult to verify about the convergence of the estima-
tion error covariance matrices of the nodes.

IKCF. The Information-Weighted Kalman consensus
filter (IKCF) [7] extends the MKCF to Ci ‰ I. It also
explicitly models communication noises. In absence of
communication noises the algorithm is

9
px
piq
t “Apx

piq
t ` giPiC

J
i R

´1
i pzi ´ Cipxq

` Pi
ÿ

jPN piq

P´1
j

´

px
pjq
t ´ px

piq
t

¯

(44)

9Pi “pA` |N piq|IqPi ` PipA` |N piq|IqJ `Q

´ g2i PiC
J
i R

´1
i CiPi ´ Pi

ÿ

jPN piq

`

P´1
j ´ P´1

i

˘

Pi.

(45)
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The proof of the boundedness of the estimation error
provided in [7] contains some technical issues [3].

6 Simulation results

We consider several scenarios. Let N “ 5 with the nodes
connected in a chain, i.e. the edges are pi, i ` 1q, and
system (1) with

A “

¨

˚

˚

˚

˚

˚

˝

´0.1 0 0 0

0.5 ´0.5 0 0

1.5 0 ´0.2 0

´1 0 1 0

˛

‹

‹

‹

‹

‹

‚

(46)

Scenario 1: complete information. The system state
is available to all nodes, i.e. Ci “ I4.

Scenario 2: local observability. The output is avail-
able to all nodes, Ci “ r1, 1, 1, 1s. pCi, Aq is observable.

Scenario 3: collective observability. The system is
available to all nodes,C1 “ r1, 0, 1, 0s,C2 “ r0, 1, 0, 0s,
C3 “ r1, 0, 0, 0s, C4 “ r1, 0, 1, 1s, C5 “ r0, 1, 1, 0s.
pCi, Aq is not observable, but pC,Aq is observable.

Scenario 4: sparse state availability. The system
state is available only to nodes in t1, 5u, i.e. C1 “ C5 “

I4, C2 “ C3 “ C4 “ 0.

Scenario 5: sparse measurement availability. The
output is available only to t1, 5u, C2 “ C3 “ C4 “ 0,

C1 “

˜

1 0 1 0

0 1 0 0

¸

, C5 “

˜

1 0 1 1

0 1 1 0

¸

, (47)

The comparison includes 100 simulations with t P r0, 50s
and integration step dt “ 2 ¨ 10´3. Q “ qfI4 with
qf “ 0.3 and Ri “ rfIi, where rf “ 0.6 and Ii has the
same number of rows as Ci. For ADKF, SDKF and DKF
γ “ 100. DKF can be used only when there is local ob-
servability. However, at nodes with no measurements Ki

is not needed and Pi may assume any value. We used
Pi “ I in the simulations of Scenario 4. MKCF needs
Ci “ I, thus it can be used in scenarios 1 and 4. However,
when Ri is scalar the terms are still congruent, thus we
used MKCF also for scenarios 2, 3. The results are sum-
marized in Table 1. Notice that when it can be applied,
the DKF attains a better consensus than ADKF. This
fact however may depend on the value of γ. To investi-
gate this issue we have computed the variance of the es-
timation error trprX8si,iq at each node as a function of γ
in Scenario 3 (notice thatADpγqX8`X8A

J
Dpγq “ ´Ψh

holds true). The results are shown in Fig. 2 (left). The
plot confirms Theorem 3: when γ increases the variance
of the estimation error of all the nodes converge to the
optimal value trpP8q. Fig. 2 (right) shows that the con-
sensus is a linear function of γ. Fig. 3 illustrates the dis-
tributed computation of P8 with the Push-Sum algo-
rithm on a 5ˆ 5 grid of 25 nodes and the output matri-
ces of scenario 3. C1–C4 are used at the grid corners, the
other nodes have no measurement. With dt “ 2 ¨ 10´3

the nodes converge at P8 in less than 0.2 s. At t “ 0.5 s
node 8 starts with C5 and P8 is updated in less than
0.1 s.

7 Conclusions

Our results do not extend immediately to the discrete-
time case (Remark 1). Thus, it is interesting to derive a
discrete-time implementation of ADKF and to charac-
terize the loss of accuracy and consensus. Further exten-
sions include communication delays and disturbances.
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